ESA Introduces Pinhole Propulsion for Satellites

ESA Introduces Pinhole Propulsion for Satellites

ESA has introduced a palm-size pinhole propulsion for satellites. This option for future space missions: each one of these seven emitter arrays etched onto this silicon wafer using micro- and nano-technology possesses more than 500 pinhole-sized emitters that spray out ions, accelerated via an electrostatic field to maximise thrust. 

Inherently scalable, this ‘electrospray’ technology is being developed as a cost- and mass-effective method of propelling CubeSats and other small satellites. For the first time in Europe, this ionic-liquid based electrospray propulsion system has achieved more than 400 hours of continuous operation.

Everyone knows that ‘space is hard’, but we like to say that ‘propulsion is harder’,” comments Daniel Pérez Grande, CEO & Co-founder of IENAI Space in Spain, developing the technology for ESA. “Developing a new technology, which we have built from scratch, has been no easy feat, but we are confident that our propulsion products will stand out in the market for their incredible performance and customisation capabilities; and in fact we have already been approached by a number of interested parties in the industry.”

Known as ATHENA (Adaptable THruster based on Electrospray powered by Nanotechnology), this system is one of three currently being developed by ESA to harness electrospray propulsion for space. ATHENA relies on conductive ionic-liquid salts as a fuel. This liquid flows through nano-textured conical emitters to be accelerated between an emitter and an extractor operating at different electric potentials. The interaction between the surface tension of the liquid and the applied electrostatic field forms ions which can be sprayed out at very high speeds (on the order of 20km/s), creating the force to move the satellite.

The micro-fabricated ATHENA system has the advantage of highly customisable thrust, using non-toxic ‘green’ propellants with no need for pressurised tanks. And the thrusters can be clustered together freely as needed – a total of six would fit onto the 10 cm face of a single CubeSat unit. These units can then be further clustered to deliver thrust for satellites of up to 50kg in mass.

Click here to learn more about ATHENA by ESA.

Publisher: SatNow
Tags:-  ThrustersLaunch

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013