Students Lead the Pen to Prevent Collisions of Nanosatellites using AI Methods

Students Lead the Pen to Prevent Collisions of Nanosatellites using AI Methods

Small satellites with a mass of up to 20 kilograms are being utilised more frequently for commercial endeavors such as telecommunications, Earth observation missions, or space-based technology testing. Risks come with this: The likelihood of orbital collisions rises with the proliferation of tiny satellites. Germany's Julius-Maximilians-Universität Würzburg (JMU) students are concerned about averting this threat. In the newly unveiled KI-SENS project, intelligent sensors and algorithms are being developed for tiny satellites so that they may recognize potentially hazardous approaches to other objects in advance and avoid collisions by changing course.

Students get to know the entire process

At KI-SENS, around 20 students from the WüSpace association act largely independently. They take on the work in project management, development, construction and testing. In this way, they get to know the entire process of a development project in space travel. For their participation in the project, they can also receive ECTS credits as part of internship modules and final theses.

The students are supported by space technology professor Hakan Kayal and his research assistant Tobias Herbst. The German Space Agency at the German Aerospace Centre (DLR) is funding the project with funds from the Federal Ministry of Economics and Climate Protection.

Drones piggyback on small satellites

The two-year project is based on the technology of the SONATE-2 satellite, which is currently being prepared for Earth observation purposes by Professor Kayal's team at JMU.

"We will develop intelligent, optical sensors, build a prototype and test it on the ground under realistic conditions," says Tobias Herbst. Drones carrying satellite dummies as payloads are to be used for this. The first tests are expected to take place as early as 2023.

High-quality education in aerospace

Hakan Kayal explains why it is students who are working on this project independently: "We can only achieve sustainable progress in the field of intelligent sensor technology for small satellites with qualified young people." Student projects of this kind would contribute significantly to high-quality education and attract further motivated students.

Many other activities are possible in the student association WüSpace, which currently has 73 members. "With us, students can exchange ideas in the field of aerospace and take part in projects, such as experiments with high-flying balloon platforms, sounding rockets or satellite missions," says doctoral student Clemens Riegler, who co-founded the association. Appropriate supervision, sufficient equipment, and the availability of rooms are guaranteed through cooperation with the university.

Click here to know more about WüSpace Association.

Click here to learn about Julius-Maximilians-Universität Würzburg (JMU).

Publisher: SatNow
Tags:-  Satellite

GNSS Constellations - A list of all GNSS satellites by constellations


Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019


Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017


Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018


Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014


Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013