AFRL Collaborates with Academia, Industry and NASA on Spacecraft Flight Experiment

AFRL Collaborates with Academia, Industry and NASA on Spacecraft Flight Experiment

The Air Force Research Laboratory Space Vehicles Directorate, in collaboration with the Georgia Tech Research Institute, or GTRI, NASA, and DuPont de Nemours, has a brand-new spacecraft materials experiment flying on the International Space Station.

A SpaceX cargo Dragon spacecraft delivered the experiment, named Materials International Space Station Experiment, or MISSE-16, to the ISS on July 16, 2022. It consists of materials never before tested in space and was installed onto an ISS platform called the Materials International Space Station Flight Facility during a recent extravehicular activity, where it will remain collecting data for the next six months before returning to earth in early 2023 for analysis.

“AFRL and GTRI will then study the effects of space weather exposure on the collection of heritage and novel spacecraft materials,” said Ryan Hoffmann, AFRL MISSE-16 mission manager. “NASA has been a driving force in helping to determine what materials should be flown, as well as conducting some of the preflight material characterizations. "DuPont supplied many of the material samples, along with providing an in-depth knowledge of material composition and space utility.”

The project was conceived by AFRL, GTRI, and NASA researchers, who submitted a proposal to the ISS U.S. National Laboratory and were awarded the experiment. In progress for two years, the experiment has more than 20 senior scientists at AFRL, GTRI, and NASA and a few summer interns contributing to its development.

“A primary objective of AFRL is to use the real space weather exposure of the ISS to validate simulated space weather exposure of materials on the ground,” Hoffmann said, who runs AFRL’s Spacecraft Charging and Instrument Calibration Lab that uses several advanced, state-of-the-art large vacuum chambers to test materials for use in space.

Dr. Elena Plis, a senior research engineer at the Electro-Optical Systems Laboratory/Georgia Tech Research Institute, is the lead and primary investigator for the MISSE-16 mission and directs the goals of the multi-institutional research team.

“We will investigate selected materials that show promise for aerospace, avionics, and spacecraft applications in low-Earth orbit, which is a particularly harsh environment for spacecraft materials,” Plis said.

“MISSE-16 will leverage the GTRI's expertise in several areas of high importance to space research,” Plis continued. “The data collected will aid in the development of technology to image spacecraft through the atmosphere using ground-based telescopes and will help to track hazardous space debris that is typically very dim and difficult to keep track of.”

In addition, Plis said the project will help open the door to determining the composition of space objects like those present in a debris cloud. This includes the development of algorithms for imaging through atmospheric turbulence and tracking in low brightness and the development of modeling tools for identifying materials undergoing space weatherization.

“The data we will receive directly from the ISS has never been collected before, and there is an aspect of machine learning required to turn the raw data into a useable format,” Hoffmann said. “In our AFRL lab, we perform imaging of the materials using a camera and illumination scheme identical to that installed on the ISS. These data serve as training datasets for the machine learning algorithms developed by GTRI’s team for analysis of the degradation of the materials under true space weather. "

AFRL anticipates several important benefits for the U.S. Space Force resulting from this project that will also be valuable to the space industry and the space enterprise in general.

“This project will help to provide an understanding of how a variety of novel materials react to the harsh space environment,” Hoffmann said. “If they are deemed suitable for flight, the properties of these materials will help to improve the reliability and sustainability of any space platform and the mission that platform supports.”

Hoffmann explained that, for the first time ever, MISSE-16 will provide real-time data on how a material degrades in the space environment.

“This data will be used to design and validate ground-based testing methodologies so that new materials can be flown with higher confidence and reliability and at a much lower cost,” he said. “This will lead to a more agile space enterprise that is able to take advantage of state-of-the-art materials rather than the current model of flying only materials that have flown before.”

Dr. Heather Cowardin, Laboratory and In Situ Lead for the NASA Johnson Space Center Orbital Debris Program Office, is collaborating with AFRL on the MISSE-16 flight experiment.

“Characterization of spacecraft materials, both classic and modern, is key to supporting space flight, mitigating the growth of orbital debris, and supporting material identification for space situational awareness,” Cowardin said. “Laboratory measurements provide a direct opportunity to assess optical parameters in a controlled environment to better ascertain the material response in harsh environments to compare with in situ measurements, such as with MISSE."

Click here to learn about the Materials International Space Station Experiment (MISSE).

Publisher: SatNow
Tags:-  Satellite

GNSS Constellations - A list of all GNSS satellites by constellations


Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019


Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017


Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018


Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014


Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013