TNO Achieves Breakthrough with Dutch Satellite Instrument's Transfer of Laser Data to Earth

TNO Achieves Breakthrough with Dutch Satellite Instrument's Transfer of Laser Data to Earth

Researchers from TNO have successfully connected a satellite to a ground station on Earth via self-developed laser communication technology. It is the first time this has been achieved with a Dutch laser satellite instrument. The technology enables much faster and safer data transfer than the radio frequencies currently used for communication.

"This pivotal milestone marks a significant achievement in advancing technological sovereignty for both the Netherlands and Europe in a strong NATO, as it will enable faster and more secure broadband connectivity. It’s a provisional outcome of collaborative endeavors within a nascent Dutch industry specializing in optical satellite communication," said Kees Buijsrogge, Director of TNO Space.

Laser satellite communication

Almost all connections in daily life, such as Wi-Fi, Bluetooth, or 5G, are based on radio frequency waves. Partly due to the increase in data consumption, this radio frequency spectrum is slowly filling up, creating scarcity and interference. Laser satellite communication offers a solution because it can send data faster and more securely via invisible laser signals. Radio frequencies achieve speeds of hundreds of megabits, in some cases several gigabits per second (Gbps). Laser communication achieves speeds of 100 to 1000 times faster. Laser communication links are interesting even at lower speeds because systems are much smaller, lighter, and more energy efficient, which is important for space applications. It is also more secure because very narrow optical laser beams are used instead of wide radio signals. This makes eavesdropping more difficult, and interference is quickly detected.


The laser communication system, SmallCAT (Small Communication Active Terminal), was launched in April 2023 by SpaceX aboard a satellite that is operated by the Norwegian Space Agency. Since then, TNO has been preparing to establish a connection between the satellite, which flies in low Earth orbit, and optical ground stations in The Hague (TNO) and Tenerife (ESA ESOC’s IZN-1)

During such an experiment, the ground station first sends a signal to the satellite, where it has to be found by the laser communication system on board through its overpass. It then sends its laser back to Earth where the ground station needs to capture it. This is incredibly challenging because the satellite is flying at an altitude of 500 kilometers at a speed of 28,000 kilometers per hour. During several experiments, TNO succeeded in finding both ground stations from space and sending back and recapturing the laser beams with extreme precision. Once a link was established, data was transferred from the satellite instrument and received by the optical ground station in The Hague at a maximum data rate of one gigabit per second. The ground station at TNO in The Hague was developed by TNO together with Airbus Netherlands. It’s the first time this has been achieved with such a compact satellite instrument of Dutch manufacture. It demonstrates that the terminal on the satellite and the ground station work and can also find each other under real conditions.

Dutch ecosystem

This success is an important step in the development of laser terminals (AAC Clyde Space) and Ground Stations (Airbus Netherlands) for the emerging laser communications market and thus in the creation of a European ecosystem for fast and secure laser satellite communications. Eventually, the laser communication system is intended to communicate with other European optical ground stations that are part of the ‘Optical Nucleus Network’, operated by Norway's KSAT (Kongsberg Satellite Services). Laser satellite communication works best if a network of multiple satellites is built for that purpose. Ultimately a constellation of satellites is needed for a reliable network.


The satellite instrument is developed by a TNO-led consortium which includes AAC Hyperion (part of AAC Clyde Space) for the onboard electronics, drivers as well as software, and Gooch & Housego (laser transmitter). The development was financed with Netherlands Space Office (NSO) funds through the ESA ARTES ScyLight program and the Dutch Ministry of Defense’s innovation budget. TNO also contributed to co-funding this program. The optical ground station in The Hague is developed by TNO in collaboration with Airbus Netherlands B.V., ASA, and Digos.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations


Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019


Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017


Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018


Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014


Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013