Q.ANT, Bosch, TRUMPF and German Aerospace Center to Develop Quantum Sensors for Precision Satellite Control

Q.ANT, Bosch, TRUMPF and German Aerospace Center to Develop Quantum Sensors for Precision Satellite Control

Quantum technology start-up Q.ANT, Bosch, TRUMPF, and the German Aerospace Center (DLR) have formed a partnership to develop space-qualified attitude sensors. The aim is to use these quantum technology-based sensors to achieve high-precision attitude control of miniaturized satellites and improve worldwide data communications.

By supporting a global network of satellites in low Earth orbit, this new collaborative venture will improve Internet connectivity, particularly in more remote regions. The German Aerospace Center (DLR) hopes to launch its first miniaturized satellites equipped with quantum technology in five years’ time. Attitude and position sensors that harness quantum effects can be used not only for satellites but also for autonomous driving systems and indoor navigation technologies in factories, logistics warehouses, and other facilities.

The project has a research budget of some 28 million euros, much of which has been provided by the German Federal Ministry of Education and Research (BMBF). The partnership also includes the Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), a research Institute that specializes in developing laser diodes, particularly for applications in space.

The sensors’ ability to maintain a precise orientation of the satellites in relation to each other will enable high-speed data connectivity – and that makes them a key part of the technology puzzle. “This strategic partnership shows the tremendous potential that lies in the collaborative development of pioneering technologies. The deployment of quantum technology in the aerospace industry is a huge opportunity for Germany as a major industrial hub,” says Michael Förtsch, CEO of Q.ANT

Quantum sensors guarantee extremely high precision

Reliable transmission of satellite communication signals can only be achieved by constantly maintaining high-precision attitude control of satellites in their orbit. If a satellite moves out of position, the signals get weaker. The consortium plans to use quantum technology to permanently enhance measurement stability. Quantum sensors are particularly suitable for deployment in satellites thanks to their ability to provide reliably accurate measurement results and excellent performance in a compact, low-weight package. This solution can keep satellites correctly oriented in space over a period of years.

Solid partnership between research and industry

The goal of developing European quantum sensors is to achieve greater independence from the global market. Q.ANT will lead the collaborative development project and develop the overall sensor concept. It is also responsible for integrating the various sensor components and keeping them in precise and stable alignment with each other to ensure they function smoothly and reliably in the satellite.

TRUMPF will contribute laser expertise from two of its German locations. TRUMPF Photonic Components in Ulm will supply the miniature laser diodes. These are currently used in smartphones, industrial optical sensors, and similar applications, but TRUMPF will now be teaming up with the Ferdinand-Braun Institut to prepare these robust beam sources for use in quantum technology and in space. 

“The job of our sensor is essentially to improve the satellite’s equilibrium," says Michael Förtsch, CEO of Q.ANT. The Stuttgart, Germany-based quantum technology start-up will also be supplying key electronic components such as a very low-noise detection system. Bosch researchers are working on the development of a miniaturized, space-qualified sensor cell.

“The measuring cell is the core component of the quantum sensor,” says Thomas Kropf, who heads up research at Bosch. It is filled with an atomic gas that is excited by laser beams and magnetic fields, which cause the atoms to spin. The rotation of the sensor causes changes in the rotational speed of this spin. This provides high-precision feedback on changes in the satellite’s attitude, thereby enabling more accurate attitude control.

“We’re delighted to be part of the project and to be able to contribute our expertise in quantum sensors. It’s another chapter in the success story of MEMS (micro-electro-mechanical systems) sensor technology at Bosch.”

“I can see a tremendously bright future for our miniature lasers in a whole variety of new applications. This is the kind of government-funded project that gives Germany a real boost as a major hub of photonics expertise. There are so many innovative technologies that can benefit from the know-how and state-of-the-art production facilities that we have built up over the years,” says Berthold Schmidt, CEO of TRUMPF Photonic Components. 

TRUMPF’s Berlin location specializes in providing solutions in the fields of sensor, laser, and quantum technology. It combines the light sources from Ulm with additional measurement technology and then integrates the resulting system into robust, miniaturized housings using innovative assembly and automation techniques. The final product is temperature-stabilized to ensure it can withstand extreme conditions in space. 

The Galileo Competence Center at DLR is responsible for all space-related aspects. As well as ensuring the system is space-qualified, it will also be in charge of the implementation, transportation, and operation of the satellite. The German Federal Ministry of Education and Research (BMBF) is funding the joint project QYRO as part of an initiative designed to support flagship projects in quantum-based measuring technology that aim to address societal challenges.

Click here to learn about Q.ANT Quantum Technology.

Publisher: SatNow
Tags:-  SatelliteSensors

GNSS Constellations - A list of all GNSS satellites by constellations


Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019


Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017


Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018


Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014


Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013